FORTRAN subroutines for random sampling without replacement

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating weighted random sampling without replacement

Random sampling from discrete populations is one of the basic primitives in statistical computing. This article briefly introduces weighted and unweighted sampling with and without replacement. The case of weighted sampling without replacement appears to be most difficult to implement efficiently, which might be one reason why the R implementation performs slowly for large problem sizes. This p...

متن کامل

Fortran Subroutines for B - nets of Box

We describe an algorithm to compute the B-nets of bivariate box splines on a three{ or four{directional mesh. Two pseudo Fortran programs for those B-nets are given.

متن کامل

LMBM — FORTRAN Subroutines for Large-Scale Nonsmooth Minimization: User’s Manual

LMBM is a limited memory bundle method for large-scale nonsmooth, possibly nonconvex, optimization. It is intended for problems that are difficult or even impossible to solve with classical gradient-based optimization methods due to nonsmoothness and for problems that can not be solved efficiently with standard nonsmooth optimization methods (like proximal bundle and bundle trust methods) due t...

متن کامل

Algorithm PREQN Fortran Subroutines for Preconditioning the Conjugate Gradient Method

PREQN is a package of Fortran subroutines for automatically generating pre conditioners for the conjugate gradient method It is designed for solving a sequence of linear systems Aix bi i t where the coe cient matrices Ai are symmetric and positive de nite and vary slowly Problems of this type arise for example in non linear optimization The preconditioners are based on limited memory quasi Newt...

متن کامل

Without-Replacement Sampling for Stochastic Gradient Methods

Stochastic gradient methods for machine learning and optimization problems are usually analyzed assuming data points are sampled with replacement. In contrast, sampling without replacement is far less understood, yet in practice it is very common, often easier to implement, and usually performs better. In this paper, we provide competitive convergence guarantees for without-replacement sampling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Behavior Research Methods & Instrumentation

سال: 1977

ISSN: 0005-7878

DOI: 10.3758/bf03214009